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SUMMARY

In this paper we consider the numerical approximation of steady and unsteady generalized Newtonian
�uid �ows using divergence free �nite elements generated by the Powell–Sabin–Heindl elements. We
derive a priori and a posteriori �nite element error estimates and prove convergence of the method of
successive approximations for the steady �ow case. A priori error estimates of unsteady �ows are also
considered. These results provide a theoretical foundation and supporting numerical studies are to be
provided in Part II. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shear thinning �uids are found in many important engineering and biological processes.
Although the power law model is widely used in practice, in many instances this empirical
law often does not �t the data well. Several other constitutive relations have been proposed in
an attempt to better describe these �uids. Examples of these models include the power law,
Carreau, Eyring, Oldroyd and Williamson models. For example, the extended Williamson �uid
model has been shown to be capable of �tting experimental data well over a large range of
shear and strain rates [1]. An Oldroyd-B model has been used in the study of blood �ow [2].
This is our motivation for studying the class of generalized Newtonian �uid models in this
paper.
In the numerical study of incompressible viscous �ow, two main sources of di�culty are the

need to preserve mass conservation and the demand to satisfy the inf–sup condition in order to
achieve stability. These topics have been extensively studied for mixed �nite element methods
applied to Navier–Stokes problems. The mixed �nite element method has also previously been
employed in the study of the power law model and the Carreau model ([3–5].) Techniques

∗ Correspondence to: G. F. Carey, TICAM, University of Texas at Austin, ACE 6412, Austin, TX 78712, U.S.A.
† E-mail: carey@cfdlab.ae.utexas.edu

Received 1 December 2001
Copyright ? 2003 John Wiley & Sons, Ltd. Revised 19 November 2002



1086 S.-S. CHOW AND G. F. CAREY

developed in these studies allow the proper handling of non-linearity and as a consequence
optimal energy error estimates for some practical elements are derived.
With the use of divergence free elements, mass conservation is built into the numerical

model and the inf–sup condition is automatically satis�ed. Such elements have been devised
in the past, but in practice analysts have largely resisted using such elements mainly be-
cause of the inherent complexity in their construction and implementation. However, we will
show in this paper that divergence free �nite elements generated from Powell–Sabin–Heindl
(PSH) elements, which we shall call curl(PSH) �nite elements, are a viable family with good
approximation properties for 2D generalized Newtonian �ow models.
The choice of the curl(PSH) triangle element is motivated not only by the divergence

free nature of the element, but also by our desire to keep the degree of the element as low
as possible in view of the non-linearity in the partial di�erential equation that we need to
solve. With approximation based on curl(PSH) elements, the non-linear coe�cient becomes
piecewise constant over each constituent subtriangle and this, in turn, leads to much easier
construction of the corresponding non-linear algebraic system. Furthermore this piecewise
constant property may be exploited in deriving a posteriori error estimates, as we show in
Section 5.
The PSH element [6] is often referred to in the approximation literature as the Powell–

Sabin 12-split element. There is also a 6-split version of the Powell–Sabin element [7]. With
proper choice of the interior point, the result presented in this paper will apply to the 6-split
element. Higher order elements with Powell–Sabin splits are also available, but even though
the a priori estimates described in this paper would still be applicable, the use of these higher
order elements is less appealing for the reasons noted above.
The structure of the treatment is as follows: �rst, in Section 2, a brief description of the

constitutive models and the governing partial di�erential equations is provided. In Section 3 we
give the variational formulation in the form of weak statement and minimization principle. We
will also prove the well-posedness of the weak problem using the continuity and monotonicity
of the associated abstract operator. In Section 4, we describe the divergence free �nite element
approximations and derive a priori �nite element error estimates. In Section 5, we consider
a posteriori error estimates for the �nite element approximation. In Section 6 we examine
the convergence of the method of successive approximations for solution of the non-linear
equations. Finally, we brie�y describe some theoretical results for non-stationary �ows.

2. GENERALIZED NEWTONIAN FLUIDS

2.1. Fluid models

Let u be the �uid velocity and denote the rate of deformation tensor denoted by D and the
shear rate by s(u), i.e.,

Dij=
1
2

(
@ui

@xj
+

@uj
@xi

)
; s=s(u)=

√
2Dij(u)Dij(u) (1)

The class of generalized Newtonian �uids to be considered is characterized by the constitutive
relation

�=�(s(u)) (2)
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and the requirement that the viscosity � and the derivative of �(s)s are uniformly bounded
above and below:

0¡m06 �(s)6M0¡∞ (3)

0¡m16 (�(s)s)′6M1¡∞ (4)

Typically, the viscosity is also a decreasing function.
Models of the generalized Newtonian �uids that satisfy these properties include:

1. Extended Williamson �uid

�(s)=�∞ +
�0 − �∞
1 + (�s)2−r (5)

with viscosity parameters �0; �∞ and parameter � satisfying �0¿�∞¿0; �¿0 and 16r
62. When r=2, we recover the usual Newtonian �uid. For r=1, we have the classical
Williamson �uid model. For r= 4

3 , the �uid is sometimes referred to as Cross �uid.
2. Carreau �uid

�(s)=�∞ +
(�0 − �∞)

(1 + (�s)2)(2−r)=2 (6)

with parameters �0; �∞ and � satisfying �0¿�∞¿0; �¿0 and r¿1.
3. Eyring �uid

�(s)=�∞ + (�0 − �∞)
sinh−1 �s

�s
(7)

with parameters �0; �∞ and � satisfying �0¿�∞¿0; �¿0.
4. Oldroyd model

�(s)=�0
1 + (�1s)2

1 + (�2s)2
(8)

with positive parameters �0; �1 and �2.
5. Generalized Oldroyd-B model with zero relaxation and retardation time

�(s)=�∞ + (�0 − �∞)
1 + log �s
1 + �s

(9)

with parameters �0; �∞ and � satisfying �0¿�∞¿0; �¿0.

For many concentrated polymer solutions and melts, good �ts can be obtained for �∞=0.
However, many theoretical results on stability and error estimates are meaningful only when
�∞ is positive. In this paper we consider the nondegenerate case �∞¿0 which would ensure
(3) and (4) hold.
For example, from the de�nition (5) of the Williamson �uid viscosity �, it is easy to check

that

�∞6 �(s)6�0 for all s¿0 (10)

(�(s)s)′ = �∞ + (�0 − �∞)
1 + (r − 1)(�s)2−r

(1 + (�s)2−r)2
(11)
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and so the boundedness conditions (3), (4) are satis�ed. Similarly, one may check that other
(nondegenerate) generalized Newtonian �uid models also satisfy these conditions.

2.2. Governing equations

Consider slow viscous �ow in a bounded, simply connected domain �⊂R2 with Lipschitz
continuous boundary @�. For non-stationary �ows, the momentum equation is

@ui

@t
+

@
@xj

�ij + fi=0 in �× (0; T ] (12)

and, for stationary slow �ow, we have

@
@xj

�ij + fi=0 in � (13)

where f is the body force and � is the stress tensor which is related to the pressure p, �uid
velocity u and the viscosity � by

�ij=−p�ij + 2�(s(u))Dij(u) (14)

Conservation of mass implies the incompressibility condition

div u=
@ui

@xi
=0 in � (15)

Boundary conditions complete the problem speci�cation for the stationary �ow problem.
For simplicity, we consider homogeneous Dirichlet boundary data

u=0 on @� (16)

but the analysis may be applied to other types of standard boundary conditions in a similar
manner. For the unsteady problem, we also need an initial condition

u(x; 0)=u0(x) in � (17)

for some given function u0.

3. VARIATIONAL FORMULATION

For �xed q∈[1; 2] and integer k, let Vk; q={v∈[Wk;q
0 (�)]2; div v=0 in �} be the Sobolev space

associated with the seminorm ‖v‖k; q=(
∫
� s(v)q dx)1=q. For q¿1, Korn’s inequality implies here

that the seminorm is equivalent to the usual Sobolev norm ‖·‖k; q on Vk; q. In what follows,
when k=1; q=2 we drop the subscripts and set

V ={v∈(H 1
0 (�))

2; div v=0 in �}
equipped with the corresponding norm ‖·‖. The dual space of V will be denoted by (V ∗; ‖·‖∗)
and the corresponding duality pairing as (· ; ·).
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The variational principle corresponding to the equations (13–16) with the viscosity speci�ed
by (5–9) is

min{J (v); v∈V} (18)

where

J (v)=
∫
�

∫ s(v)

0
2�(t)t dt − f · v dx (19)

and the corresponding weak statement is given by

(J ′(u); v)=0 for all v∈V (20)

where J ′ is the Gateaux derivative of J with

J ′(u)=Au − f
for

(Au; v)=
∫
�
2�(s(u))Dij(u)Dij(v) dx

and

(f ; v)=
∫
�
f · v dx

As we shall see below, existence and uniqueness are straight forward consequences of the
strict monotonicity and continuity property of the operator A over the space V .

3.1. Well-posedness

From the boundedness properties (3), (4), one can show that the operator A is strongly
monotone and continuous. The results are summarized below with the proofs omitted. Details
are available in Reference [3].

Proposition 1
The operator A is Lipschitz continuous on V : there exists M¿0 such that

‖Au − Av‖∗6M ‖u − v‖ for all u; v∈V (21)

Proposition 2
The operator A is strongly monotone over V ; i.e. for some m¿0,

(Au − Av; u − v)¿m ‖u − v‖2 for all u; v∈V (22)

As A is continuous over V , and A is strongly monotone, J is strictly coercive. Consequently,
the function J (·) is convex, lower semi-continuous and coercive over V . Hence existence and
uniqueness follows easily from standard theories on monotone operators and convex function-
als. Furthermore, if u1; u2 are solutions of (20) corresponding to data f=f1; f2, respectively, it
is easy to show that

m‖u1 − u2‖26(Au1 − Au2; u1 − u2)6M ‖f1 − f2‖∗ ‖u1 − u2‖

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1085–1118
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Thus the solution to the variational problem (18) has continuous dependence on data. Hence
(18) is a well-posed problem.

4. A CLASS OF DIVERGENCE FREE ELEMENTS

Let � be a simply connected, bounded domain in R2 with a Lipschitz boundary @�. Consider
the linear operator curl :H 1(�)→ (L2(�))2 de�ned by

curlw=
(
@w
@y

;−@w
@x

)

Let

H 2
0 (�)=

{
w∈H 2(�); w=

@w
@n
=0 on @�

}

where n=(n1; n2) is the unit outward normal.
As the operator curl is a bijection from H 2

0 (�) onto V (see Reference [8]) we have

V =curl H 2
0 (�)={v; v=curl w for some w∈H 2

0 (�)}
and so a divergence free �nite element subspace Vh may be constructed by �rst constructing
an arbitrary �nite element subspace Wh in H 2

0 (�) and then setting

Vh=curl Wh={vh; vh=curl wh for some wh∈Wh(�)}
which then implies Vh ⊂V , i.e. Vh consists of �nite element functions that are divergence free.
The above idea is the basis of the construction of divergence free curl(PSH) elements using

PSH elements. PSH �nite element basis functions are continuously di�erentiable, piecewise
quadratic polynomials de�ned on a macro triangle consisting of twelve subtriangles. Each
element K has twelve degrees of freedom de�ned by nodal and derivative values at the
vertices and normal derivative values de�ned at the midpoint of each side of the triangle (see
Figure 1). A simpler composite Powell–Sabin 6-split element can also be constructed.
The Powell–Sabin elements were initially devised for use in computer graphics, especially

contour plotting. Heindl developed the PSH element independently and studied its approxi-
mation properties. K�r���zek and Liu [8] were the �rst to consider using the PSH element to
generate divergence free elements for use in Navier–Stokes calculation.
The curl(PSH) basis functions are continuous and piecewise linear over each subtriangle

T ∈K . The basis functions are listed in the appendix.
Let Th be a triangulation based on PSH elements K . We shall assume that the triangulation

Th is quasi-regular in the sense that for all T ∈K and for all K∈Th, there exists constants
C1; C2 such that

C1h26meas(T )6meas(K)6C2h2 (23)

The curl(PSH) �nite element approximation for (20) is given by:
Find uh∈Vh such that

(Auh; vh)=(f ; vh) for all vh∈Vh (24)
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Figure 1. Powell–Sabin–Heindl element.

The minimization problem corresponding to the above formulation is to �nd uh∈Vh such
that

J (uh)= min{J (vh); vh∈Vh} (25)

From the continuity property (Proposition 1) and the monotonicity property (Proposition 2),
we have the following:

Proposition 3
The solutions u and uh are uniformly bounded above.

Proof
Since A0=0 and using Propositions 1 and 2, we have

m ‖uh‖26(Auh; uh)=(f ; uh)6‖f‖∗uh‖

and thus

‖uh‖6C

with the constant C independent of h. A similar result holds for u.

5. ENERGY AND Lq ESTIMATE

In this section we establish error estimates of the �nite element approximations in the energy
norm and in the Lq norm, with 1¡q¡2. First we establish an abstract error estimate and
then an energy estimate for the curl(PSH) �nite element approximation. We then show how,
under additional assumption on the viscosity, Lq error estimates may be established.
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5.1. Abstract error estimate

Theorem 1
The �nite element approximation uh of (24) to the solution u of (20) satis�es the following
error bound:

‖u − uh‖6C inf
vh∈Vh

‖u − vh‖ (26)

Proof
From Propositions 1 and 2, for arbitrary vh∈Vh, using (24), we have

m‖u − uh‖26 (Au − Auh; u − uh)
= (Au − Auh; u − vh)
6 ‖Au − Auh‖∗ ‖u − vh‖
6M‖u − uh‖ ‖u − vh‖

and so the abstract estimate follows easily.

Theorem 2
The �nite element solutions uh of (24) converge to the solution u of (20).

Proof
As h→ 0, the �nite element space Vh →V , so Theorem 1 implies that uh converges to u in
the ‘energy’ norm as h→ 0.

5.2. Finite element error estimate

Let {Wh}h→0 be a family of �nite element subspaces of H 2
0 (�) such that the Wh-interpolant

	h of  ∈H 2
0 (�)∩Hk+2(�) possesses the approximation property

‖ −	h ‖H 1; 26Chk | |Hk+2; 2 (27)

Here C denotes a positive constant independent of h, and k is a given integer. For any
v∈V ∩ [Hk+1]2, there exists  ∈H 2

0 (�) such that v=curl  , since curl is a bijection. An in-
terpolant 	hv∈Vh of v may be constructed by setting

	hv=curl(	h )

The interpolant 	hv has the following approximation property (e.g. see Reference [8] for
the 12-split case):

Theorem 3
If (27) holds, then for all V ∩ [Hk+1(�)]2,

‖v −	hv‖1;26Chk |v|k+1;2 (28)

In particular, for the curl(PSH) elements considered here, 	hv is piecewise linear and k=1.
Hence from the abstract estimate (26) in Theorem 1, we have the following result.
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Theorem 4
Let u and uh be the solutions of (20) and (24) respectively. If u∈V ∩ [Hk+1]2 then

‖u − uh‖16Ch|u|k+1
Proof
From Theorem 1,

‖u − uh‖6C‖u −	hu‖
and applying the approximating property (28) of the interpolant 	h, we have the desired
result.

5.3. Lq-error estimates

From a theoretical viewpoint, an additional bene�t of utilizing divergence free elements is
that one may also derive Lq-error estimates for 1¡q¡2. In this subsection, we show that if
the viscosity function satis�es the property that there exists a positive constant C such that

|�′(s)|+ |s�′′(s)− �′(s)|6C for all s¿0 (29)

then it is possible to derive Lq-error estimates for the �nite element approximations.
For linear problems, L2-error estimates are obtained with the aid of Nitsche’s duality argu-

ment which exploits the adjoint operator associated with the original problem. For non-linear
operators, it is of course not possible to de�ne an adjoint operator directly. However, if the op-
erator A associated with a non-linear problem is di�erentiable, then, for each u in V ⊂ dom(A),
the operator A′(u) is a linear operator from V to V ′ and we may then construct an adjoint
(A′(u))∗ with

(A′(u)v;w)=((A′(u))∗w; v) for all v;w∈V (30)

For the generalized Newtonian �ow problems considered here, let

fijk‘(s(u))=�(s(u))�ik�j‘ +
�′(s(u))
s(u)

Dij(u)Dk‘(u) (31)

then

(A′(u)v;w)=
∫
�
fijk‘(s(u))Dij(v)Dk‘(w) dx (32)

that is,

(A′(u)v;w) =
∫
�
�(s(u))D(u) :D(w)

+
�′(s(u))
s(u)

D(u) :D(v)D(u) :D(w) dx (33)

For each v;w∈V , we may also de�ne an operator Ah :V→V ∗ by

(Ahv;w)=
∫
�
ah
ijk‘Dij(v)Dk‘(w) dx (34)
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where

ah
ijk‘=

∫ 1

0
fijk‘(�s(u) + (1− �)s(uh)) ds (35)

where u and uh are the weak solution and the �nite element approximations respectively.
Using the mean value theorem and the orthogonal relation

(Au − Auh; vh)=0 for all vh∈Vh (36)

we see that

(Ah(u − uh); vh)=0 for all vh∈Vh (37)

Note that for linear problems, A=A′(v)=Ah. With these operators de�ned, we now proceed
to prove the Lq-error estimates. Let 1=p+ 1=q=1.

Theorem 5
For problem (20), if u∈[W 2; p(�)]2 and (29) holds, then the �nite element solution to (24)
satis�es

‖u − uh‖0; q6C ‖u − uh‖2 + Ch‖u − uh‖ (38)

where w is the solution to the adjoint problem (40) below.

Proof
Let g∈[Lp(�)]2 be given. Proceeding as in the standard Nitsche approach, we seek to establish
the bound ∣∣∣∣

∫
�
g · (u − uh) dx

∣∣∣∣6Ch‖g‖0; p (39)

where C is independent of h.
First, consider the adjoint problem:

Find w∈V : ((A′(u))∗w; v)=(g; v) for all v∈V (40)

From (30), Equation (40) may be rewritten as

(A′(u)v;w)=
∫
�
fijk‘Dij(v)Dk‘(w) dx=(g; v) (41)

Now, suppressing dependence on u,

@
@xm

fijk‘(x) =
�′(s)
s
(Di′j′ ;mDi′j′�ik�j‘ +Dij;mDk‘ +DijDk‘;m)

+
(
�′(s)
s

)′ 1
s
(Di′j′ ;mDi′j′DijDk‘) (42)
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so ∣∣∣∣ @
@xm

fijk‘(x)
∣∣∣∣6C|∇2u| (|�′(s)|+ |s�′′(s)− �′(s)|) (43)

where |∇2u| denote some matrix norm of the Hessian matrix of u at some �xed x∈�.
Consequently, if u∈[W 2;p(�)]2 and (29) holds, then fijk‘∈W 1;p(�). The standard regularity

result [9] may now be invoked to yield the well-posedness of (40) and the inequality

‖w‖2;p6C ‖g‖0; p (44)

Letting eh=u − uh in (41) and using the triangle inequality we get∣∣∣∣
∫
�
g · (u − uh) dx

∣∣∣∣6|(A′(u)(eh)− Ah(eh);w)|+ |(Ah(eh);w)| (45)

For the second term, we have

|(Ah(u − uh);w)|= |(Ah(u − uh);w− wI)| (46)

where wI is an arbitrary element of Vh. So

|(Aheh;w)|6C ‖eh‖ ‖w− wI‖0; p (47)

since L2 ,→Lq and

|ah
ijk‘|6

∫ 1

0
(�(t)t)′|t=�s(u)+(1−�)s(uh) d�6C (48)

Hence from approximation theory,

inf{‖w− wI‖; wI ∈Vh}6C h ‖w‖2;p
and (44), we have

|(Aheh;w)|6C h ‖eh‖ ‖g‖0; p (49)

For the �rst term, since the derivatives of fijk‘ are uniformly bounded, and the imbedding
W 2; s(�) ,→W 1;∞(�) holds for �⊂R2 and s¿2,

|(A′(u)(eh)− Ah(eh);w)|

6
∫ 1

0

∫
�
|f;ijk‘ (u)− f;ijk‘ (�u+ (1− �)uh)| s(eh) s(w) dx d�

6C‖eh‖2 ‖w‖1;∞
6C‖u − uh‖2 ‖w‖2; p (50)

So from (45), (49), (50), (44) we have∫
�
g · (eh) dx=(A′(u)eh − Aheh;w) + (Aheh;w) (51)
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and so

‖u − uh‖0; q6C ‖u − uh‖2 + C h ‖u − uh‖ (52)

which completes the proof.

For curl(PSH) �nite elements ‖u−uh‖=O(h) and ‖w−wh‖=O(h), so we have the following:

Theorem 6
Under the conditions of Theorem 5, the curl(PSH) �nite element approximations have the
optimal order of convergence in the Lq-norm, i.e.

‖u − uh‖0; q=O(h2)

5.3.1. Some speci�c �uid models. The above estimate was established under the assumption
that the �uid model satis�es condition (29). We now show that it is satis�ed by the �uid
models listed in Section 2.1 except for the Williamson �uid with 1¡r¡2 and the generalized
Oldroyd-B model. For simplicity, let �0 − �∞=1. For the classical Williamson �uid (5),

|�′(s)|= �
(1 + �s)2

6� (53)

|s�′′(s)− �′(s)|= �
(3�s+ 1)
(1 + �s)3

6 4� (54)

and, for the Carreau �uids (6),

|�′(s)|=(2− r)
�2s

(1 + �2s2)(4−r)=26(2− r)� (55)

|s�′′(s)− �′(s)| = (2− r)(4− r)
�4s3

(1 + �2s2)3−(r=2)

6 (2− r)(4− r)� (56)

For the Oldroyd model (8),

|�′(s)|=2 �0s|�21 − �22|
(1 + �22s2)2

6
2
�2

|�21 − �22| (57)

|s�′′(s)− �′(s)|=8 �22s
3|�21 − �22|

(1 + �22s2)3
6

8
�2

|�21 − �22| (58)

For the Eyring �uid (7), the veri�cation is slightly more involved.
To show the derivative

|�′(s)|=
∣∣∣∣∣sinh

−1(�s)
�s2

− 1
s
√
1 + �2s2

∣∣∣∣∣ (59)
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is bounded, we �rst consider the function

f(s)=�2s2 +
�s√

1 + �2s2
− sinh−1 �s (60)

Clearly, f(0)=0. Since

f′(s)=2 �2s− s2�3

(1 + �2s2)3=2
(61)

and

�3s2

(1 + �2s2)3=2
=�2s

�s2

(1 + �2s2)3=2
6�2s

so f′(s)¿�2s¿0 and hence f(s)¿0 for all s¿0.
Furthermore, the function

g(s)= sinh−1 �s− �s
(1 + �2s2)1=2

is also an non-negative function since g(0)=0 and

g′(s)=
�3s2

(1 + �2s2)3=2
¿0

Consequently, we have

|�′(s)|=
∣∣∣∣∣sinh

−1(�s)
�s2

− 1
s
√
1 + �2s2

∣∣∣∣∣6� (62)

Furthermore, as

|s�′′(s)|=
∣∣∣∣− �2s
(1 + �2s2)3=2

− 2�′(s)
∣∣∣∣6�+ 2|�′(s)|63� (63)

and hence the inequality (29) is satis�ed.

6. A POSTERIORI ERROR ESTIMATES

Let us now consider the derivation of a posteriori upper and lower bounds for the �nite
element approximation error ‖u− uh‖. Such estimates are particularly relevant for analysis of
the reliability of computed solutions and for adaptive mesh calculations.
For each PSH element K∈Th, let T denote one of the subtriangles over which a given

�nite element function vh is linear, @T its boundary and e∈@T be one of its interior edges.
We use [�ijnj]e to denote the jump of the normal component of the tensor � across e.
An upper bound for ‖u − uh‖ may be obtained using the idea of Dur�an and Padra [10].

The result stated in that paper concerns an error estimator for the p-Laplacian problem using
linear Crouzeix–Raviart elements. Although there is a basic de�ciency with that result in
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that some, usually uncomputable, constants arise in the error estimator for the p-Laplacian
problem, there is no similar di�culty in our situation.
More speci�cally, for any v∈[H 1(�)]2, let Dh(v) be an L2-tensor de�ned by

Dh
ij(v)|T=Dij(v|T ) (64)

Set

sh(v)=
√
2Dh(v) :Dh(v)

For given �nite element approximation uh∈Vh of the solution u of (20), we de�ne the
edgewise constant vector

Je; n=

{
[�(s(uh))Dij(uh)nj]e if e⊂ @T; e 	⊂ @�

0 if e⊂ @�
(65)

Finally, for �xed uh∈Vh, let U∈V be de�ned by

(AU; v)=
∫
�
2�(s(uh))Dij(uh)Dij(v) dx for all v∈V (66)

The function U may be viewed as the extension of uh on V .
The a posteriori error estimator is then constructed by establishing upper bounds for ‖u−U‖

and ‖U − uh‖ and applying the triangle inequality.
For a bound on ‖u −U‖, we have

Theorem 7
Let u∈V be the weak solution of (20) and let uh∈Vh be its �nite element approximation.
Then there exists a constant C such that

‖u −U‖6C

( ∑
K∈Th

∑
T⊂K

meas(T) ‖f‖2L2(T )
)1=2

(67)

Proof
Let v∈V . Since D(uh) is piecewise constant over each curl(PSH) triangle element, from (20)
and (24), we may integrate by parts to get

(Au − Auh; v)

=
∑

K∈Th

∑
T⊂K

∫
T
f · v dx −

∫
e
2�(s(uh))Dij(uh)nj vi ds

=
∑

K∈Th

( ∑
T⊂K

∫
T
f · v dx + ∑

e⊂@T

∫
e
Je; n · v ds

)
(68)

Note that if v=vh∈Vh, then

∑
K∈Th

∑
T⊂K

∫
T
f · vh dx +

∑
e⊂@T

∫
e
Je; n · vh ds=0 (69)
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From Proposition 2, integrating by parts and recalling that Dij(uh) is piecewise constant,

m‖u − uh‖2
6 (Au − AU; u − uh)

=
∑

K∈Th

( ∑
T⊂K

∫
T
f · (u − u)h dx +

∑
e⊂@T

∫
e
Je; n · (u − uh) ds

)
(70)

If we let vh in (69) be eIh, the approximation of e ≡ u − uh in Vh de�ned by∫
e
eIh ds=

∫
e
e ds (71)

then from (69)–(71),

m‖e‖26 ∑
K∈Th

∑
T⊂K

∫
T
f · (e − eIh) dx (72)

Applying the Cauchy Schwarz inequality and the interpolation error bound

‖e − eIh‖0;2; T6C
( ∑

T⊂K
meas(T )

)1=2
‖e‖ (73)

we have (67) and thus the theorem is proved.
Next, for a bound on ‖U−uh‖, let EI denote the set of interior edges of the PSH elements,

and set

Je; t=

{
[ @uh@t ]e if e∈EI

−2 @uh
@t |e if e⊂ @�

(74)

where [@uh=@t]e denotes the jump across e of the tangential derivative.

Theorem 8
Let u∈V be the weak solution of (20) and let U∈V be an extension of the �nite element
approximation uh∈Vh as de�ned in (66), then there exists a (computable) constant CN such
that

‖U − uh‖6CN

( ∑
K∈Th

∑
T∈K

∑
e∈@T

meas(e)2|Je; t |2
)1=2

Proof
Using Proposition 2 we have

‖D(U − uh)‖2L2(�)6C
∫
�
(�(s(uh))D(uh)− �(s(U))D(u)) :D(uh) dx

From (66)

div(�(s(U))D(U)− �(sh(uh))Dh(uh))=0
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there exists �∈H 1(�) such that

�(s(U))D(U)− �(sh(uh))Dh(uh)=curl� (75)

and thus from the orthogonality relation

∑
K∈Th

∑
T⊂K

∫
T
Dh(e) curl v dx=0

for all piecewise linear and continuous v∈Vh, we have

‖Dh(U − uh)‖2L2(�) (76)

6C
∫
�
Dh(uh) curl(�− �I) dx (77)

=C
∑

K∈Th

∑
T∈K

∑
e∈@T

∫
e
Je; t(�− �I) dx (78)

6C

( ∑
K∈Th

∑
T∈K

∑
e∈@T

meas(e)2|Je; t |2
)1=2

|�|1;2 (79)

From (75) and Proposition 1, we have

|�|1;26Csh(U − uh) (80)

and thus the theorem is proved.
We remark that the constants C in the above theorems are independent of the weak solution

u and determinable using the parameters in (22), (73) and the geometric parameters of the
triangulation.
It is also possible to compute a lower bound for the �nite element error when two �nite

element approximations uh∈Vh and uh′ ∈Vh′ , with h′¡h, to the weak solution u of (20) are
available.
Since Vh ⊂Vh′ ⊂V , from the minimizing property of the weak solution and the �nite element

solutions,

J (u)6J (uh′)6J (uh)

and so

J (uh)− J (u)¿J (uh′)− J (u)

Also,

J (uh)− J (uh′)¿0¿J (u)− J (uh′)

As

(J ′(uh′); uh − uh′)=0
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so using the monotonicity property (Proposition 2)

J (uh)− J (uh′) =
∫ 1

0
(J ′(uh + �(uh′ − uh)); uh − uh′) d�

=
∫ 1

0
(J ′(uh + �(uh′ − uh))− J ′(uh′); uh − uh′) d�

¿
∫ 1

0

(
m
1− �

)
‖�uh′ + (1− �)uh − uh′‖2d�

¿
1
2
m ‖uh − uh′‖2

Now

J (uh)− J (u) =
∫ 1

0
(J ′(uh + �(u − uh)); uh − u) d�

=
∫ 1

0
(J ′(uh + �(u − uh))− J ′(u); uh − u) d�

6
∫ 1

0
‖J ′(uh + �(u − uh))− J ′(u)‖∗ ‖uh − u‖ d�

6M
∫ 1

0
‖uh + �(u − uh)‖ d� · ‖uh − u‖

=
M
2

‖u − uh‖2

Since

1
2
m‖uh − uh′‖26 J (uh)− J (uh′)

= J (uh)− J (u) + J (u)− J (uh′)
6 J (uh)− J (u)

6
M
2

‖u − uh‖2 (81)

so

‖u − uh‖¿
√

m
M

‖uh − uh′‖ (82)

7. METHOD OF SUCCESSIVE APPROXIMATIONS

As the discretized problem is non-linear, a simple numerical algorithm to linearize the problem
is the method of successive approximations, or sometimes known in the present context as
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the Ka�canov method. With an initial guess u(0)h ∈Vh, the method of successive approximations
generates a sequence of approximate solutions {u(k)h }⊂Vh by solving, for k=0; 1; 2; : : : ;∫

�
2�(s(u(k)h ))Dij(u

(k+1)
h )Dij(vh) dx=

∫
�
f · vh dx for all vh∈Vh (83)

In Reference [11], this method applied to a quasi-Newtonian �ow obeying the Carreau law
was considered. It was shown that the Ka�canov method generates a sequence of solutions
{u(k)}∞k=0⊂V for the continuous problems, with k=0; 1; 2; : : : :∫

�
2�(s(u(k)))Dij(u(k+1))Dij(v) dx=

∫
�
f · v dx for all v∈V (84)

where �(·) is given by (6) and that the sequence converges to the weak solution u of (20)
as k →∞.
The convergence result does not apply directly to the discretized problem in a mixed �nite

element method setting. However, in our context of divergence free elements, it is possible
to prove convergence of the Ka�canov method (83).
Let

B(v;w1;w2)=
∫
�
2�(s(v))Dij(w1)Dij(w2) dx

To further simply notation, we write, for �xed u(k)h ,

Bk(vh;wh)=B(u(k)h ; vh;wh) for all vh;wh∈Vh

Then (83) may be written as

B(u(k)h ; u
(k+1)
h ; vh)=(f ; vh) for all vh∈Vh (85)

Theorem 9
Assuming that in addition to the bounds (3) and (4), the viscosity function �(s) is a decreasing
function. Then the Ka�canov method (83) has a unique solution u(k+1)h for each k¿1, and the
sequence {u(k)h }∞k=0 converges to the �nite element solution uh of (24) in Vh.

Proof
Following Reference [11], �rst note that the linear problem (83) corresponds to the minimiza-
tion problem:
Find u(k+1)h ∈Vh s.t.

Jk(u
(k+1)
h )= min{Jk(vh); vh∈Vh} (86)

where

Jk(vh)=
∫
�

1
2
�(s(u(k)h ))s

2(vh)− f · vh dx (87)

In view of bounds (3) and (4), existence and uniqueness follow from the strong convexity
and continuity of Jk(·) over Vh.
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Also, from the bound (3), we have

Bk(u
(k+1)
h − u(k)h ; u(k+1)h − u(k)h )¿m‖u(k+1)h − u(k)h ‖2 (88)

for some m¿0.
Next we show that the sequence {J (u(k)h )}∞k=0 is decreasing. Here J is the functional de�ned

in (19). An important immediate result is to show that

E(v)− E(u)6
1
2
[B(u; v; v)− B(u; u; u)] (89)

where

E(v)=
∫
�

∫ s(v)

0
�(z)z dz dx

and

1
2
[B(u; v; v)− B(u; u; u)]

=
1
2

[∫
�
2�(s(u))Dij(v)Dij(v) dx −

∫
�
2�(s(u))Dij(v)Dij(v) dx

]

=
∫
�
�(s(u))(s(v)2 − s(u)2)) dx

Inequality (89) will hold if we can show that∫ t

s
�(z)z dz6

1
2
�(s)(t2 − s2) for all t; s¿0

or, equivalently, ∫ t

s
(�(z)− �(s))z dz60 for all t; s¿0 (90)

Let s be �xed and consider the function

g(t)=
∫ t

s
(�(z)− �(s))z dz

For t¿s¿0, since � is a decreasing function, �(z)6�(s) for all z¿s and so g(t)60 for all
t¿s¿0.
If s¿t¿0, we have

g(t)=
∫ s

t
(�(s)− �(z))z dz

Using the fact that � is a decreasing function, �(s)6�(z) for all z¿s and so again g(t)60
and thus (90) and (89) hold.
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Consequently, from (88) and (89),

m‖u(k)h − u(k+1)h ‖2

6Bk(u
(k)
h − u(k+1)h ; u(k)h − u(k+1)h )

=Bk(u
(k)
h ; u(k)h )− Bk(u

(k+1)
h ; u(k+1)h )− 2Bk(u

(k+1)
h ; u(k)h − u(k+1)h )

= 2(E(u(k)h )− E(u(k+1)h ))− 2(f ; u(k)h − u(k+1)h )

62(J (u(k)h )− J (u(k+1)h )) (91)

Hence the sequence {J (u(k)h )}∞k=0 is decreasing. From (25), {J (u(k)h )} is bounded below by
J (uh) over Vh, hence

lim
k→∞

‖u(k)h − u(k+1)h ‖=0 (92)

Furthermore,

m‖u(k)h − uh‖26 (Au(k)h − Auh; u
(k)
h − uh)

= Bk(u
(k)
h ; u(k)h − uh)− (f ; u(k)h − uh)

= Bk(u
(k)
h − u(k+1)h ; u(k)h − uh)

6M‖u(k)h − u(k+1)h ‖ ‖u(k)h − uh‖ (93)

So

lim
k→∞

‖u(k)h − uh‖6 lim
k→∞

M
m

‖u(k)h − u(k+1)h ‖=0 (94)

It is worth mentioning that one can also develop a posteriori error estimates for the Ka�canov
iterates u(k)h by using a conjugate functional as outlined in Reference [11].

8. NON-STATIONARY FLOWS

The above analysis may be extended to non-stationary �ows. The governing equations are
given by the unsteady momentum equation (12) together with the constitutive equation (14),
the incompressibility condition (15), the boundary condition (16) and the initial condition (17).
For q; r∈[1;∞] and integer m, let W be a subspace of [Wm;r(�)]2. We use Lq(0; T ;W) to

denote the Banach space of Lq functions mapping (0; T ) into W with norm

‖v‖(q;m; r)=‖v‖Lq(0;T ;[Wm; r(�)]2)=
(∫ T

0
‖v(t)‖qm; r dt

)1=q

for 16q¡∞ and the usual sup norm de�nition for q=∞. The spaces Hk(0; T ;W) and
Ck((0; T ];W) for integer k¿0 and related seminorms are similarly de�ned.
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In what follows, we assume that f is Lipschitz continuous in time and u0∈[H 1(�)]2.
For V de�ned as in Section 3, the weak solution u∈H 1(0; T ;V ) of the non-stationary �ow

problem is given by (
@u
@t

; v
)
= (Au; v)− (f ; v) for all v∈V (95)

u(x; 0) = u0(x) for x∈� (96)

The following stability result may be obtained using, e.g., the argument of Wei [12]:

Proposition 4
The unsteady weak problem (95) has a unique solution u∈C1([0; t]; V ) such that

|ut |2(2; 0;2) + |u|2L∞(0; T ;V )6C(|f |2(2; 0;2) + |u0|21)

8.1. Semidiscrete approximation

Let Vh be the curl(PSH) �nite element space de�ned in Section 4. The semidiscrete approxi-
mation to the weak problem (95)–(96) is
Find uh∈H 1(0; T ;Vh) such that for almost all t∈[0; T ],(

@
@t
uh; vh

)
+ (Auh; vh) = (f ; vh) for all vh∈Vh (97)

uh(x; 0) = u0h(x) for x∈� (98)

where u0h∈Vh is a projection of u0.

Proposition 5
The semidiscrete �nite element approximation (97)–(98) to the unsteady weak problem (95)–
(96) has a unique solution uh∈C1([0; t]; Vh) such that

‖uht‖2(2; 0;2) + ‖uh‖2L∞(0;T ;V )6C(‖f‖2(2; 0;2) + ‖u0h‖21) (99)

Theorem 10
With u0h de�ned as the interpolation of u0, and assuming that u∈L2(0; T ;V )∩L2(0; T ;H 2(�)),
we have, for some constant C¿0,

‖u − uh‖2C([0; T ];[L2(�)]2) + ‖u − uh‖2L2(0;T ;V )6Ch2 (100)

Proof
Let e=u − uh. From (95) and (97), we have

(et ; vh) + (Au − Auh; vh)=0 for all vh∈Vh (101)

Now ∫ t

0
(et ; e) dt=

∫ t

0

d
dt

(
1
2
‖e(t)‖20;2

)
dt=

1
2
(‖e(t)‖20;2 − ‖u0 − u0h‖20;2) (102)
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We get for t∈(0; T ], and for any wh∈L2(0; T ;Vh),

1
2
d
dt

‖e‖20;2 +m‖e‖2

6(et ; u − uh) + (Au − Auh; u − uh)
=(et ; u − wh) + (et ;wh − uh)
+ (Au − Awh; u − uh) + (Au − Awh;wh − uh)

=(et ; u − wh) + (Au − Auh; u − wh) (103)

So by integrating in time, and recalling Propositions 1, 4 and 5, and applying the Cauchy–
Schwarz inequality,

1
2
‖e‖20;2 +m

∫ t

0
‖e‖2 dt

=
∫ t

0
(et ; u − wh) + (Au − Auh; u − wh) dt +

1
2
‖u0 − u0h‖20;2

6‖et‖(2; 0;2) ‖u − wh‖(2; 0;2) +
∫ t

0
‖Au − Auh‖∗‖u − wh‖ dt + 12‖u0 − u0h‖

2
0;2

6 C ‖u − wh‖(2; 0;2) +M
∫ t

0
‖e‖ ‖u − wh‖ dt + 12 ‖u0 − u0h‖

2
0;2

6C ‖u − wh‖(2; 0;2) + m
2
‖e‖2L2(0; t;V ) +

2M 2

m
‖u − wh‖2(2; 1;2)

+
1
2
‖u0 − u0h‖20;2 (104)

Note here that the constant C depends on f ; u0, and u0h. Combining (102), (104), and the
interpolation error bound

‖u0 − u0h‖0;26C‖u0‖21;2
we get

‖u − uh(t)‖2 + ‖u − uh‖2L2(0; t;V )6Ch2 (105)

The theorem follows by taking the supremum over [0; T ] in the above inequality.

8.2. Fully discrete approximation

A fully discrete approximation is obtained by applying the fully implicit method to (97). Let

t=T=N , and tn=n
t for n=0; : : : ; N .
For n=1; : : : ; N , �nd un

h∈Vh such that(
un
h − un−1

h


t
; vh

)
+ (Aun

h; vh)=(f
n; vh) for all vh∈Vh (106)
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and

u0h=u0h in � (107)

with f n denoting the value of f at t=n
t.
Let

U(t) = un
h
t − tn−1

t

+ un−1
h

tn − t

t

; tn−16t6tn

Un
h(t) =U(tn)=u

n
h; tn−1¡t6tn

To derive a bound for u(t) − U(t), we �rst introduce an approximation W(t), which is
piecewise linear in time, to the weak solution u(t).
For n=1; : : : ; N let wn∈V be obtained by time discretized scheme(

wn − wn−1


t
; v
)
+ (Awn; v)=(f n; v) for all v∈V (108)

and

w0=u0 in � (109)

We de�ne

W(t)=wn t − tn−1

t

+ wn−1 tn − t

t

; tn−16t6tn

With an argument analogous to that of Wei [12], one can show that the sequence wn, and
consequently W(t) is well de�ned; the sequence {wn} is uniformly bounded in the L2 and
the H 1 norms (in space); the function {W(t)} and its time derivative are, for �xed t∈[0; T ],
uniformly bounded in the L2 norm in space.
Furthermore, if we write Wk(t) for the function W(t) corresponding to 
t=T=k, then the

sequence {Wk} is a Cauchy sequence converging to the weak solution u(t) as k →∞, with

‖Wm −Wk‖20;26C
(
1
m
+
1
k

)
(110)

and consequently, for �xed t∈[0; T ],

‖u(t)−W(t)‖20;26C
1
N
=C 
t (111)

Let W n
h ∈Vh be the projection of wn onto Vh, i.e.

(AW n
h − Aun; vh)=0 for all vh∈Vh (112)

and so from (106), (108), and (112), and setting vh=W n
h − wn

h,(
w n − w n−1


t
− un

h − un−1
h


t
;Wn

h − un
h

)
+ (AWn

h − Aun
h;W

n
h − un

h)=0 (113)
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Theorem 11
The fully discrete �nite element approximation (106)–(107) to the unsteady weak problem
(95)–(96) has a unique solution un

h∈Vh for each n¿1 and, with u0h de�ned as in the previous
theorem, and assuming that u ∈ L2(0; T ;V )∩L2(0; T ;H 2(�)), we have, for some constant
C¿0,

‖u −U‖2C([0;T ];[L2(�)]2)6C(
t + h2) (114)

Proof
For n¿1, let En ≡ (un

h −un−1
h )=
t. First consider the case n=1. Letting vh=E1, and recalling

the Lipschitz continuity and monotonicity of A in Propositions 1 and 2,

‖E1‖20;26 ‖E1‖20;2 +
(
Au1h − Au0h;

u1h − u0h

t

)

= (f1;E1)−
(
Au0h;

u1h − u0h

t

)

6 (‖f1 − f0‖0;2 + ‖f0‖0;2 +M‖u0h‖)‖E1‖0;2 (115)

As f is Lipschitz continuous in time, we get

‖E1‖0;26C (
t + ‖f0‖0;2 + ‖u0‖) (116)

For n¿1, we have

(En; vh) + (Aun
h; vh)=(f

n; vh) for all vh∈Vh (117)

and

(En−1; vh) + (Aun−1
h ; vh)=(f n−1; vh) for all vh∈Vh (118)

Setting vh=En and subtracting (118) from (117), and again using Propositions 1 and 2,
we have

‖En‖20;26 ‖En‖20;2 +
(
Aun

h − Aun−1
h ;

un
h − un−1

h


t

)

= (f n − f n−1;En) + (En−1;En)

6 (‖f n − f n−1‖0;2 + ‖En−1
h ‖0;2)‖En‖0;2 (119)

and so ∣∣∣∣
∣∣∣∣u1h − u0h
t

∣∣∣∣
∣∣∣∣
0;2
=‖En‖0;26C (120)

where the constant C depends on T; f0; u0 and the Lipschitz constant of f .
In view of Propositions 1 and 2, we see that, using arguments similar to those in Reference

[12], Aun
h may be extended to a bounded linear operator on L2(�) and hence the sequence

{un
h} is uniformly bounded. Consequently, the functions U(t) and Un

h(t) de�ned above and
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their corresponding time derivatives are all uniformly bounded in the L2(�) norm with respect
to n and t.
Note that for tn−1¡t6tn,

d
dt
U(t)=

un
h − un−1

h


t
;

d
dt
W(t)=

wn − wn−1


t
(121)

For tn¡t6tn+1,(
wn − wn−1


t
− un

h − un−1
h


t
;W(t)−U(t)

)

=
(
d
dt

W (t)− d
dt

U (t);W(t)−U(t)
)

=
(
d(W −U)

dt
;W(t)−Wn

h

)
+
(
d(W −U)

dt
;Wn

h − un
h(t)
)

+
(
d(W −U)

dt
; un

h(t)−U(t)
)

(122)

Now, by (113), (121), (122), and the monotonicity of A,

1
2
d
dt

‖W(t)−U(t)‖20;2

=
(
d(W −U)

dt
;W(t)−U(t)

)

=
(
d(W −U)

dt
;W(t)−Wn

h

)
− (AWn

h − Aun
h;W

n
h − un

h)

+
(
d(W −U)

dt
; un

h −U(t)
)

6
(
d(W −U)

dt
;W(t)−Wn

h

)
+
(
d(W −U)

dt
; un

h −U(t)
)

(123)

As the derivative dU=dt is uniformly bounded in the L2(�) norm and a similar result holds
for dW=dt, we have

(
d(W −U)

dt
;W(t)−Wn

h

)
6C‖W(t)−Wn

h‖0;2
=
∣∣∣∣
∣∣∣∣ t − tn

t

(un+1 − un) + un −Wn
h

∣∣∣∣
∣∣∣∣
0;2

6C

(
|tn − t|

∣∣∣∣
∣∣∣∣un+1 − un


t

∣∣∣∣
∣∣∣∣
0;2
+ ‖un −Wn

h‖0;2
)
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6C(
t + ‖un −Wn
h‖0;2)

6C(
t + h2) (124)

Also

(
d(W −U)

dt
; un

h −U(t)
)
6C‖un

h −U(t)‖0;2

=
∣∣∣∣
∣∣∣∣ t − tn

t

(un+1 − un)
∣∣∣∣
∣∣∣∣
0;2

6C

(
|tn − t|

∣∣∣∣
∣∣∣∣un+1

h − un
h


t

∣∣∣∣
∣∣∣∣
0;2

)

6C
t (125)

Thus from (123)–(125) we have, for tn¡t6tn+1; n=0; 1; : : : ; N − 1,

1
2
d
dt

‖W(t)−U(t)‖20;26C(
t + h2) (126)

Integrating over [0; t], we have

‖W(t)−U(t)‖20;26‖u0 − u0h‖20;2‖+ C(
t + h2) (127)

Consequently, from the above result and (111),

‖u(t)−U(t)‖20;26 2‖u(t)−W(t)‖20;2 + 2‖W(t)−U(t)‖20;2
6C(
t + h2) (128)

and, taking the supremum over [0; T ], the theorem is proved.

9. CONCLUDING REMARKS

Here we consider several models for generalized Newtonian �uids and prove optimal a priori
estimates under appropriate assumptions for an interesting class of divergence free elements
that are computationally appealing for these models. These estimates and the a posteriori
estimates that we also give here provide the theoretical foundation for applying �nite elements
to �ow applications involving these generalized Newtonian �uid models.
To our knowledge, no corresponding three-dimensional PSH element has been constructed

and it is not clear if such element even exists. If a piecewise quadratic C1 element with small
support could be found, then the results derived in this paper would remain valid, with some
suitable modi�cation for the a posteriori estimates.
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Figure 2. Numbering of subtriangles on reference element.

APPENDIX A: POWELL–SABIN–HEINDL ELEMENT BASIS FUNCTIONS

Here we list the Powell–Sabin–Heindl 12-split (2) element basis functions over the reference
triangle with vertices a0=(0; 0); a1=(1; 0); a2=(0; 1). By taking the curl of these functions,
the basis functions for the divergence free Powell–Sabin–Heindl element may be constructed
(Figure 2).

1. Basis function corresponding to vertex a0:

Sub� Polynomial

1 −2x2 − 2y2 + 1
2 −6x2 − 8xy − 6y2 + 4x + 4y
3 2x2 − 4y2 − 4x + 2
4 2x2 − 4y2 − 4x + 2
5 4(x + y − 1)2
6 4(x + y − 1)2
7 4(x + y − 1)2
8 4(x + y − 1)2
9 −4x2 + 2y2 − 4y + 2
10 −4x2 + 2y2 − 4y + 2
11 −6x2 − 8xy − 6y2 + 4x + 4y
12 −2x2 − 2y2 + 1
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2. Basis function corresponding to vertex a1:

Sub� Polynomial

1 2x2

2 4x2 + 4xy + 2y2 − 2x − 2y + 1
2

3 y2 + 2x − 1
2

4 −2x2 + y2 + 4x − 1
5 −3x2 − 4xy − 3y2 + 6x + 4y − 2
6 −x2 − 4xy − 3y2 + 4x + 4y − 3

2

7 −x2 − 4xy − 3y2 + 4x + 4y − 3
2

8 −x2 − 4xy − y2 + 4x + 2y − 1
9 3x2

10 3x2 − 2y2 + 2y − 1
2

11 4x2 + 4xy + 2y2 − 2x − 2y + 1
2

12 2x2

3. Basis function corresponding to vertex a2:

Sub� Polynomial

1 2y2

2 2x2 + 4xy + 4y2 − 2x − 2y + 1
2

3 −2x2 + 3y2 + 2x − 1
2

4 3y2

5 −x2 − 4xy − y2 + 2x + 4y − 1
6 −3x2 − 4xy − y2 + 4x + 4y − 3

2

7 −3x2 − 4xy − y2 + 4x + 4y − 3
2

8 −3x2 − 4xy − 3y2 + 4x + 6y − 2
9 x2 − 2y2 + 4y − 1
10 x2 + 2y − 1

2

11 2x2 + 4xy + 4y2 − 2x − 2y + 1
2

12 2y2
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4. Basis function corresponding to x-derivative at vertex a0:

Sub� Polynomial

1 − 3
2x
2 − y2 + x

2 − 3
2x
2 − y2 + x

3 − 3
2x
2 − y2 + x

4 1
2x
2 − y2 − x + 1

2

5 (x + y − 1)2

6 −x2 + 2xy + y2 − 2y + 1
2

7 1
2 (2y − 1)2

8 0

9 0

10 1
2 (2y − 1)2

11 − 1
2 (x + 4y − 2)x

12 − 1
2 (x + 4y − 2)x

5. Basis function corresponding to y-derivative at vertex a0:

Sub� Polynomial

1 − 1
2 (4x + y − 2)y

2 − 1
2 (4x + y − 2)y

3 1
2 (2x − 1)2

4 0

5 0

6 1
2 (2x − 1)2

7 x2 + 2xy − y2 − 2x + 1
2

8 (x + y − 1)2

9 −x2 + 1
2 y

2 − y + 1
2

10 −x2 − 3
2y

2 + y

11 −x2 − 3
2y

2 + y

12 −x2 − 3
2y

2 + y
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6. Basis function corresponding to x-derivative at vertex a1:

Sub� Polynomial

1 − 1
2x
2

2 −x2 − xy − 1
2y

2 + 1
2x +

1
2y − 1

8

3 − 1
4y

2 − 1
2x +

1
8

4 3
2x
2 − 1

4y
2 − 2x + 1

2

5 7
4x
2 + xy + 3

4y
2 − 5

2x − y + 3
4

6 1
4x
2 + xy + 3

4y
2 − x − y + 3

8

7 1
4x
2 + xy + 3

4y
2 − x − y + 3

8

8 1
4x
2 + xy + 1

4y
2 − x − 1

2y +
1
4

9 − 3
4x
2

10 − 3
4x
2 + 1

2y
2 − 1

2y +
1
8

11 −x2 − xy − 1
2y

2 + 1
2x +

1
2y − 1

8

12 − 1
2x
2

7. Basis function corresponding to y-derivative at vertex a1:

Sub� Polynomial

1 0

2 3
8 (2x + 2y − 1)2

3 1
2x
2 + 2xy + 5

4y
2 − 1

2x − y + 1
8

4 1
4 (8x + 5y − 4)y

5 − 3
4x
2 − xy − 7

4y
2 + 3

2x + 2y − 3
4

6 − 1
4x
2 − xy − 7

4y
2 + x + 2y − 5

8

7 − 1
4x
2 − xy − 7

4y
2 + x + 2y − 5

8

8 − 1
4x
2 − xy − 1

4y
2 + x + 1

2y − 1
4

9 3
4x
2

10 3
4x
2 − 3

2y
2 + 3

2y − 3
8

11 3
8 (2x + 2y − 1)2

12 0
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8. Basis function corresponding to x-derivative at vertex a2:

Sub� Polynomial

1 0

2 3
8 (2x + 2y − 1)2

3 − 3
2x
2 + 3

4y
2 + 3

2x − 3
8

4 3
4y

2

5 − 1
4x
2 − xy − 1

4y
2 + 1

2x + y − 1
4

6 − 7
4x
2 − xy − 1

4y
2 + 2x + y − 5

8

7 − 7
4x
2 − xy − 1

4y
2 + 2x + y − 5

8

8 − 7
4x
2 − xy − 3

4y
2 + 2x + 3

2y − 3
4

9 1
4 (5x + 8y − 4)x

10 5
4x
2 + 2xy + 1

2y
2 − x − 1

2y +
1
8

11 3
8 (2x + 2y − 1)2

12 0

9. Basis function corresponding to y-derivative at vertex a2:

Sub� Polynomial

1 − 1
2y

2

2 − 1
2x
2 − xy − y2 + 1

2x +
1
2y − 1

8

3 1
2x
2 − 3

4y
2 − 1

2x +
1
8

4 − 3
4y

2

5 1
4x
2 + xy + 1

4y
2 − 1

2x − y + 1
4

6 3
4x
2 + xy + 1

4y
2 − x − y + 3

8

7 3
4x
2 + xy + 1

4y
2 − x − y + 3

8

8 3
4x
2 + xy + 7

4y
2 − x − 5

2y +
3
4

9 − 1
4x
2 + 3

2y
2 − 2y + 1

2

10 − 1
4x
2 − 1

2y +
1
8

11 − 1
2x
2 − xy − y2 + 1

2x +
1
2y − 1

8

12 − 1
2y

2
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10. Basis function corresponding to mid-edge point ( 12 ;
1
2 ):

Sub� Polynomial

1 0

2 1
4

√
2 (2x + 2y − 1)2

3 − 1
4

√
2(2x +

√
2y − 1)(2x −

√
2y − 1)

4 1
2

√
2y2

5 − 1
2

√
2(x + 3y − 1)(x + y − 1)

6 − 1
4

√
2(6x2 + 8xy + 6y2 − 8x − 8y + 3)

7 − 1
4

√
2(6x2 + 8xy + 6y2 − 8x − 8y + 3)

8 − 1
2

√
2(x + y − 1)(3x + y − 1)

9 1
2

√
2x2

10 1
8

√
2(2x + 2

√
2y −

√
2)(2 x − 2

√
2y +

√
2)

11 1
4

√
2(2x + 2y − 1)2

12 0

11. Basis function corresponding to mid-edge point (0; 12 ):

Sub� Polynomial

1 y2

2 −2x2 − 4xy − y2 + 2x + 2y − 1
2

3 1
2 (2x − 1)2

4 0

5 0

6 1
2 (2x − 1)2

7 x2 + 2xy − y2 − 2x + 1
2

8 (x + y − 1)2

9 −(3x + 2y − 2)x
10 −3x2 − 2xy − 2y2 + 2x + 2y − 1

2

11 −3x2 − 2xy − 2y2 + 2x + 2y − 1
2

12 −(x − 2y)x
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12. Basis function corresponding to mid-edge point ( 12 ; 0):

Sub� Polynomial

1 (2x − y)y

2 −2x2 − 2xy − 3y2 + 2x + 2y − 1
2

3 −2x2 − 2xy − 3y2 + 2x + 2y − 1
2

4 −(2x + 3y − 2)y
5 (x + y − 1)2

6 −x2 + 2xy + y2 − 2y + 1
2

7 1
2 (2y − 1)2

8 0

9 0

10 1
2 (2y − 1)2

11 −x2 − 4xy − 2y2 + 2x + 2y − 1
2

12 x2
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